Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 56(80): 12057-12060, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32902532

RESUMO

Negative thermal quenching (NTQ), an abnormal phenomenon that the intensity of photoluminescence (PL) increases with increasing temperature, has essentially been restricted to either bulk semiconductors or very low temperatures. Here, we report a delayed fluorescence copper-organic framework exhibiting negative thermal quenching (NTQ) of photoluminescence, which is driven by the fluctuation between the localized and delocalized form of its imidazole ligand. The process is completely reversible on cooling/heating cycles. This study opens a new avenue to explore the electronically switchable NTQ effect in coordination networks and further to develop the NTQ-based light-emitting diodes.

2.
Dalton Trans ; 49(34): 12082-12087, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820779

RESUMO

White light-emitting diodes (WLEDs) have aroused great attention due to their potential technological applications. In this work, we present two new Zn(ii) anthracene-linker-driven coordination polymers that exhibit intrinsic white-light emission. The emission covers the whole visible spectrum at room temperature. The chromaticity coordinates of the broadband emission can be tuned under external stimuli, including thermal and mechanical grinding. The obtained coordination polymer materials emit a "warm" white light at room temperature suitable for indoor lighting applications as well as a "cold" white light at the cryogenic temperature. Hence, the well-defined structures and mechanically tunable emission provide an excellent opportunity for realizing their potential as white emitters in optoelectronics.

3.
Nat Commun ; 10(1): 5510, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796745

RESUMO

The study of transition metal clusters exhibiting fast electron hopping or delocalization remains challenging, because intermetallic communications mediated through bridging ligands are normally weak. Herein, we report the synthesis of a nanosized complex, [Fe(Tp)(CN)3]8[Fe(H2O)(DMSO)]6 (abbreviated as [Fe14], Tp-, hydrotris(pyrazolyl)borate; DMSO, dimethyl sulfoxide), which has a fluctuating valence due to two mobile d-electrons in its atomic layer shell. The rate of electron transfer of [Fe14] complex demonstrates the Arrhenius-type temperature dependence in the nanosized spheric surface, wherein high-spin centers are ferromagnetically coupled, producing an S = 14 ground state. The electron-hopping rate at room temperature is faster than the time scale of Mössbauer measurements (<~10-8 s). Partial reduction of N-terminal high spin FeIII sites and electron mediation ability of CN ligands lead to the observation of both an extensive electron transfer and magnetic coupling properties in a precisely atomic layered shell structure of a nanosized [Fe14] complex.

4.
J Biol Rhythms ; 34(5): 515-524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31317809

RESUMO

In mammals, an endogenous clock located in the suprachiasmatic nucleus (SCN) of the brain regulates the circadian rhythms of physiological and behavioral activities. The SCN is composed of about 20,000 neurons that are autonomous oscillators with nonidentical intrinsic periods ranging from 22 h to 28 h. These neurons are coupled through neurotransmitters and synchronized to form a network, which produces a robust circadian rhythm of a uniform period. The neurons, which are the nodes in the network, are known to be heterogeneous in their characteristics, which is reflected in different phenotypes and different functionality. This heterogeneous nature of the nodes of the network leads to the question as to whether the structure of the SCN network is assortative or disassortative. Thus far, the disassortativity of the SCN network has not been assessed and neither have its effects on the collective behaviors of the SCN neurons. In the present study, we build a directed SCN network composed of hundreds of neurons for a single slice using the method of transfer entropy, based on the experimental data. Then, we measured the synchronization degree as well as the disassortativity coefficient of the network structure (calculated by either the out-degrees or the in-degrees of the nodes) and found that the network of the SCN is a disassortative network. Furthermore, a positive relationship is observed between the synchronization degree and disassortativity of the network, which is confirmed by simulations of our modeling. Our finding suggests that the disassortativity of the network structure plays a role in the synchronization between SCN neurons; that is, the synchronization degree increases with the increase of the disassortativity, which implies that a more heterogeneous coupling in the network of the SCN is important for proper function of the SCN.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Rede Nervosa/fisiologia , Neurônios/fisiologia , Núcleo Supraquiasmático/fisiologia , Algoritmos , Animais , Simulação por Computador , Entropia , Técnicas In Vitro , Camundongos , Modelos Teóricos , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/efeitos dos fármacos , Tetrodotoxina/farmacologia
5.
Inorg Chem ; 58(7): 4524-4533, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30895776

RESUMO

Postsynthetic modification represents an efficient strategy for the fabrication of tunable metal-organic frameworks (MOFs) and derived high-performance functional materials. Herein, we report the synthesis of a mixed-linker zinc(II)-based double-layered MOF (dlMOF) with dual-emissive luminescence, which was further applied as a host matrix to fabricate highly tunable Ln@dlMOF materials (Ln = Eu, Tb, Eu/Tb). The emission characteristics of these materials can be readily modulated over a wide spectrum, including white light emission, by simply tuning the Eu3+/Tb3+ molar ratio in EuTb@dlMOF. Furthermore, by virtue of the difference in thermal sensitivity between triple-emissive sources, the Eu3+/Tb3+-codoped thermometer EuTb@dlMOF exhibits real-time successive chromogenic switches from red (room temperature) to white (intermediate temperature) to blue/green (cryogenic temperature) emission in a wide temperature region. The versatile performance and the facile assembly from easily available linkers suggest that postsynthetic lanthanide encapsulation represents an efficient strategy for the future engineering of advanced photoluminescent materials with stimuli-responsive and thermochromic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...